If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-30x-148=0
a = 1; b = -30; c = -148;
Δ = b2-4ac
Δ = -302-4·1·(-148)
Δ = 1492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1492}=\sqrt{4*373}=\sqrt{4}*\sqrt{373}=2\sqrt{373}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{373}}{2*1}=\frac{30-2\sqrt{373}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{373}}{2*1}=\frac{30+2\sqrt{373}}{2} $
| 3x+45=69 | | 9-x=4x-5x | | (3x+8)=(12x-4) | | -7(3b+4)+(22b-3)=0+ | | (11n/2)+8=30 | | (k+4)=(3k-6) | | 4|3w+1|–7=-17. | | 5j+3=2j+21 | | (1/2)-(10/49x)=(24/49)-(1/14x | | 7u-33u=24 | | 9=r+13 | | 7(x-2)-6=3x+8 | | 75/100=4/x | | 20m-6=15m-5 | | (n)(n)+7=151 | | 5(2x-6)=61 | | 8b+9=17b+6 | | 1=2j≥7 | | 3c+1=4c-9 | | 5x+2=9x+6 | | -10s+8=-6-9s+5 | | 7p=6p-9 | | 7c-10=-10c+7 | | 1+8g=4g-3 | | 4a-12=80 | | -9-4z=-5z | | 4+80x=50 | | 2t=-t+10 | | -9+f=-2f | | x/3+x/18=7/6 | | -2p-3=-3p | | 2p-3=-3p |